Les domaines d'activité du LEM3 concernent les matériaux, la mécanique, l'étude des microstructures et des procédés. Le LEM3 se situe au niveau des meilleures équipes internationales sur de nombreux sujets, notamment : instabilités plastiques et thermoplastiques, transformations de phase, caractérisation et évolution de microstructure et texture sous traitements thermomécaniques, matériaux intelligents, modélisation multi-échelle, auto-organisation de défauts cristallins, intégrité des surfaces obtenues par des procédés mécaniques, comportement dynamique des matériaux, ingénierie pour la santé, usinage à grande vitesse, flambement et vibrations des structures, dynamique du comportement des matériaux, modélisation micromécanique, méthodes numériques.
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Advanced Search

1 to 10 of 135 Results
Dec 21, 2023
Baldit, Adrien; de Oliveira Cafiero, Caio; Landier, Joël; Rimbert, François, 2023, "Dataset on dynamic analysis of an unbalanced hollow cylinder rolling over a horizontal plane", https://doi.org/10.12763/DGSNVP, Université de Lorraine, V1, UNF:6:UHAosNZ5VrRoWOy+OZ+lsg== [fileUNF]
Rigid solid body dynamics is a key element of the undergraduate mechanical engineering curriculum. In a context of reverse engineering and/or sustainable development, being able to analyze the mechanical and material properties of a system without damaging it is a required skill....
Python Source Code - 3.1 KB - MD5: 3e1af4ed1e6fe8a959049ebbb1016734
Python Source Code - 23.6 KB - MD5: 01290f1c9011adf85bb15c8826a19e57
Python Source Code - 10.7 KB - MD5: f12d86da25f6cd4729eb01267f635a26
Python Source Code - 6.7 KB - MD5: a9672924e66a4718863b1860d8b4d7f9
Python Source Code - 3.1 KB - MD5: 4271b62f80ddafcb1b57d2ad4ce1e68e
Tabular Data - 4.6 KB - 9 Variables, 47 Observations - UNF:6:XJLBS8oHWHTyw23VzTXNXw==
Tabular Data - 893 B - 9 Variables, 8 Observations - UNF:6:VI+hic/xzhmoqHMwBWAqJA==
Comma Separated Values - 22.3 KB - MD5: 203851d1ad036eef66f89d7eae3708e8
Add Data

Log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.