Le LORIA, Laboratoire lorrain de Recherche en Informatique et ses Applications est une Unité Mixte de Recherche (UMR 7503), commune à plusieurs établissements : le CNRS, l’Université de Lorraine et Inria. Depuis sa création en 1997, le Loria a pour mission la recherche fondamentale et appliquée en sciences informatiques. Le Loria est un des plus grands laboratoires de la région lorraine.
Featured Dataverses

In order to use this feature you must have at least one published dataverse.

Publish Dataverse

Are you sure you want to publish your dataverse? Once you do so it must remain published.

Publish Dataverse

This dataverse cannot be published because the dataverse it is in has not been published.

Delete Dataverse

Are you sure you want to delete your dataverse? You cannot undelete this dataverse.

Advanced Search

1,011 to 1,020 of 1,816 Results
May 9, 2022 - Meta-ACG preprocessor
JSON - 1.9 KB - MD5: abad1173b173538815007de36b45bfd0
May 9, 2022 - Meta-ACG preprocessor
Code source Python - 14.8 KB - MD5: 830ab1370b1245caaf5d3ce4168da912
May 9, 2022 - Meta-ACG preprocessor
Texte Markdown - 7.8 KB - MD5: 9348fde28817e77144dc7d92a7adfb0a
May 9, 2022 - Meta-ACG preprocessor
Code source Python - 3.3 KB - MD5: eb0ad62eb0db3791b2c25cf9502109fc
May 9, 2022 - Meta-ACG preprocessor
Code source Python - 32.3 KB - MD5: b3dac2db296e9ae44acab6a944c0cb8e
Mar 25, 2022 - Meta-ACG preprocessor
Inconnu - 212 B - MD5: 250f982883eb900d34fb95e830b20454
Emacs Lisp configuration file installing Emacs MACG Major mode
Mar 25, 2022 - Meta-ACG preprocessor
Inconnu - 1.3 KB - MD5: ab9184fda69d3ea018be89225105ede0
Minimal MACG grammar exemplifying NP - VP agreement
Mar 25, 2022 - Meta-ACG preprocessor
JSON - 656 B - MD5: bd968f956dee030b644758368a27d549
VS Code configuration file for Emacs MACG mode
Mar 16, 2022
Marquer, Esteban; Couceiro, Miguel; Safa Alsaidi; Amandine Decker, 2022, "Siganalogies - morphological analogies from Sigmorphon 2016 and 2019", https://doi.org/10.12763/MLCFIE, Université de Lorraine, V1
The siganalogies dataset contains morphological analogies built upon Sigmorphon 2016 and Sigmorphon 2019 in PyTorch. An analogical proportion is defined as a 4-ary relation written A:B::C:D and which reads "A is to B as C is to D". In this dataset, we manipulate morphological ana...
Code source Python - 4.0 KB - MD5: 50300f82ab40d1a54a83afb3db16b46f
Add Data

Log in to create a dataverse or add a dataset.

Share Dataverse

Share this dataverse on your favorite social media networks.

Link Dataverse
Reset Modifications

Are you sure you want to reset the selected metadata fields? If you do this, any customizations (hidden, required, optional) you have done will no longer appear.